Glycoproteins Dibuat Sesuai Susunannya

Diadaptasi dari Nat. Chem. Biol.
N-Glycosylation Rekayasa, pada teknik baru, secara metabolikal mengganti E. coli dengan menghasilkan hexasaccharide terhubung dengan lipid. Dua enzim C. jejuni terekayasa (merah muda dan hijau) menempel pada protein (biru) pada periplasma (antara cytoplasmic dan membran sel). Pada in vitro, glycans menghiasi dan glycan yang dibuat ditambahkan secara enzimatikal.
Bottom of Form
Sebuah tim internasional untuk pertama kalinya telah mengolah tipe N-glycoprotein homogen yang dihasilkan oleh organisme eukaryotic, termasuk didalam manusia, dari prokaryotes. Pada molekul protein tersebut, gula bercabang dari komposisi seragam dihubungkan pada arginines khusus.
Pekerjaan ini dapat mengarahkan pada pengobatan antibodi monoclonal dengan potensi yang berkembang dengan sedikit efek samping serta dapat memudahkan studi tentang efek biologis dari protein berbeda pada pola glycosylation-nya, yang memainkan fungsi penting yang masih belum sepenuhnya dapat dipahami.
Beberapa kelompok telah mencoba untuk menghasilkan N-glycoproteins (N-glycans) pada bakteri, yang secara tipikal tidak meng-glycosylate protein mereka. Seorang mikrobiologist yaitu Markus Aebi pada Swiss Federal Institute of Technology, Zurich, dan para rekan kerjanya sebelumnya telah merekayasa Escherichia coli dengan gen dari Campylobacter jejuni, bakterium yang menyebabkan gastroenteritis yang tidak biasa mempunyai kemampuan untuk meng- glycosylate proteinnya. Namun rekayasa E. coli yang membuat glycoproteins dengan suatu immunogenik C. jejuni glycan serta gula bacillosamine yang tidak biasa dan tidak diinginkan terhubung pada protein.
Sekarang ini, Aebi, seorang spesialis protein glycosylation yaitu Lai-Xi Wang pada University of Maryland School of Medicine, dan rekan kerjanya melaporkan untuk pertama kalinya bahwa E. coli dapat direkayasa dengan gen C. jejuni untuk membuat bacillosamine yang bebas N-glycoproteins dimana dapat dielaborasikan secara enzimatik kedalam nonimmunogenic eukaryote bertipe N-glycoproteins dengan glycans terkostumasi (Nat. Chem. Biol., DOI: 10.1038/nchembio.314). Mereka melakukan ini dengan memproduksi N-glycoproteins pada C. Jejuni dalam sel rekayasa E. coli, memurnikan mereka, lalu menukar glycans mereka bagi eukaryotic.
N-glyco­proteins homogen dapat juga dibuat dengan cara lain, seperti sintesis kimiawi atau dengan ekspresi pada ragi rekayasa. Akan tetapi sintesis kimiawi sangatlah menantang dan membutuhkan waktu. Serta Aebi dan Wang mempercayai pendekatan bakterial akan sangat cepat, dan menghasilkan lebih tinggi dari pada menciptakan mereka pada peragian, yang mana eukaryotes.
Seperti contoh, ragi telah direkayasa secara berbeda bagi tiap-tiap tipe glycan (glycoform), diman metode barunya “akan memiliki tingkat fleksibilitas untuk menghasilkan serangkaian glycoforms homogen dengan menggunakan satu tipe E. Coli terekayasa,” kata Wang. “Lebih lanjut, hal ini juga akan menghasilkan glycoforms tidak alamiah dimana sistem raginya tidak mampu untuk memproduksi.” Pendekatan ragi ini dikontrol oleh Merck & Co. Sebagai suatu hasil dari akuisisi pada tahun 2006 dari perusahaan biotech GlycoFi, yang mengembangkannya.
Seorang spesialis bakterial N-glycosylation yaitu Christine M. Szymanski pada University of Alberta, di Edmonton, mengatakan bahwa studi baru ini menunjukkan  “seseorang yang untuk pertam kalinya telah mampu menggunakan suatu sistem bakterial untuk mensintesis eukaryotic homogen N-yang terhubung dengan glycoprotein. Ada sistem yang lainnya telah digunakan untuk hal ini, namun mereka menghadapi permasalahan. Yang satu ini menunjukkan janji yang banyak namun memerlukan pengembangan lebih lanjut untuk membuat sistemnya memungkinkan secara komersil.”

Lisozim: Penangkal Bakteri Alami pada Airmata

Mata kita sebagai salah satu organ yang paling sensitif dilindungi oleh organ lain dan zat kimia tertentu. Mulai dari rambut mata, alis, dan kelopak mata yang melindungi secara fisik, mata juga dilindungi oleh airmata yang melindungi secara kimiawi. Airmata ternyata tidak hanya memiliki fungsi untuk melumasi mata yang kering tetapi juga melindungi mata dari mikroorganisme berbahaya terutama bakteri.
Sekitar seabad yang lalu, peraih Nobel bidang kedokteran Alexander Fleming menemukan bahwa airmata mengandung protein yang bersifat antiseptik yang disebut lisozim. Setelah penemuan ini telah banyak penelitian yang dilakukan untuk mengetahui struktur dan cara kerja protein tersebut dalam membunuh bakteri.
Tim peneliti dari University of California Irvine menemukan bahwa struktur lisozim tersebut seperti memiliki semacam “mulut” yang dapat “memangsa” bakteri berbahaya. Tim ini menggunakan suatu transistor yang sangat kecil sekitar 25 kali lebih kecil daripada sirkuit laptop atau smartphone. Lisozim ditempelkan pada transistor ini dan kemudian aktivitasnya dipantau. Pengamatan menunjukkan bahwa lisozim memang memiliki struktur seperti mulut yang dapat memakan bakteri lewat jalan menghancurkan dinding selnya. Hal ini dimungkinkan karena adanya aktivitas katalitik dari lisozim.
“Mulut lisozim tersebut akan mengunyah bagian dinding sel bakteri yang masuk dan ingin menginfeksi mata kita,” jelas Professor Gregory Weiss, seorang ahli biologi molekular yang merupakan wakil ketua proyek ini. Butuh beberapa tahun bagi para peneliti dari UCI ini untuk menyusun transistor ekstra kecil ini dan dapat digunakan untuk mendeteksi aktivitas dari protein pada airmata.
Para peneliti berharap teknologi ini juga dapat digunakan untuk mendeteksi molekul karsinogenik penyebab kanker. Gregory Weiss, yang kehilangan ayahnya akibat menderita kanker paru-paru, mengatakan apabila suatu molekul terdeteksi terkait dengan kanker maka kita akan dapat mendeteksi keberadaan kanker jauh lebih awal. Apabila keberadaan kanker diketahui jauh lebih awal, pasien akan memiliki peluang untuk sembuh jauh lebih besar.
Disarikan dari ScienceDaily.Com
Sumber gambar: http://www.urmc.rochester.edu

Protein Berumur Panjang Penangkal Penuaan Sel


Salah satu pertanyaan terbesar dalam bidang ilmu biologi adalah: bagaimana sel menua? Saat ini, para ilmuwan dari Salk Institue for Biological Studies melaporkan bahwa mereka menemukan kelemahan dari salah satu komponen yang menyebabkan terjadinya penuaan pada sel otak. Para ilmuwan tersebut menemukan beberapa protein yang disebut sebagai protein berumur sangat panjang (extremely long-lived proteins/ELLPs). Protein ini ditemui pada permukaan inti sel neuron dan yang mengejutkan adalah memiliki waktu hidup jauh lebih lama dibanding protein-protein lainnya di dalam tubuh.
Apabila kebanyakan protein dalam tubuh hanya berumur sekitar dua hari, para peneliti ini menemukan bahwa ELLPs pada otak tikus memiliki umur yang tidak jauh berbeda dengan umur organisme itu sendiri. Penemuan mereka ini telah dipublikasikan pada jurnal Science. Peneliti tersebut pertama-tama menemukan suatu “mesin” intraselular yang esensial dimana salah satu komponennya adalah protein. Mereka berasumsi bahwa protein ini tidak tergantikan selama berada pada “mesin” tersebut.
ELLPs membentuk saluran transportasi pada permukaan inti sel yang dapat diibaratkan sebagai pintu yang mengatur bahan-bahan kimia yang masuk dan keluar. Tidak seperti protein lainnya di dalam tubuh, ELLPs tidak digantikan selama masih mengalami aktivitas yang normal, dan tidak mengalami modifikasi kimia atau kerusakan lainnya.
Kerusakan pada ELLPs dapat melemahkan kemampuan saluran transportasi tiga dimensi yang terdiri atas protein-protein ini. Apabila ELLPs yang berperan sebagai pelindung sel dari toksin ini rusak, maka selanjutnya toksin tersebut akan mengubah struktur DNA sel dan mengganggu aktivitas gen, sehingga menyebabkan terjadinya penuaan sel.
Pada kebanyakan sel makhluk hidup, kecuali neuron, sel melawan kerusakan fungsional yang disebabkan oleh perubahan struktur protein. Sehingga protein-protein tersebut perlu diganti dengan protein yang baru yang memiliki fungsi sesuai dengan sebelumnya. Menurut Martin Hetzer, seorang professor di Salk’s Molecular and Cell Biology Laboratory yang merupakan ketua tim peneliti ini, kerusakan pori-pori inti sel kemungkinan merupakan mekanisme utama terjadinya kerusakan fungsi inti sel yang berkaitan dengan usia.
Penemuan ini semakin membuktikan pemahaman saat ini akan relevansi dari sifat penuaan dari molekul tertentu pada sel dengan kelainan-kelainan neurodegeneratif seperti penyakit Alzheimer dan Parkinson.
Disarikan dari ScienceDaily.Com